Testing composite hypotheses applied to AR - model order estimation ; the Akaike - criterion revised

نویسنده

  • Rudy Moddemeijer
چکیده

Akaike’s criterion is often used to test composite hypotheses; for example to determine the order of a priori unknown Auto-Regressive and/or Moving Average models. Objections are formulated against Akaike’s criterion and some modifications are proposed. The application of the theory leads to a general technique for AR-model order estimation based on testing pairs of composite hypotheses. This technique allows performance control by means of a simple parameter, the upper-bound on the error of the first kind (false alarm probability). The presented simulations and the theoretical elaboration improve the understanding of the problems and limitations of techniques based on the Akaike criterion. Due to the excellent correspondence between the theory and the experimental results we consider the in AR-model order estimation problem for low order AR-processes with Gaussian white noise as solved. Keywords— AIC, Akaike criterion, AR, ARMA, autoregressive processes, composite hypothesis, entropy, maximum likelihood, model order, Neyman-Pearson, system identification, time series analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing Composite Hypotheses Applied to Ar Order Estimation; the Akaike-criterion Revised

Akaike's criterion is used to test composite hypotheses ; for example to determine the order of AR models. A modiication is presented to test composite hypotheses given an upper-bound on the error of the rst kind (Neyman-Pearson). The presented theory is applied to AR order estimation and veriied by simulations. The experimental results are so good that we consider the AR order estimation probl...

متن کامل

AR-order estimation by testing sets using the Modified Information Criterion

The Modified Information Criterion (MIC) is an Akaike-like criterion which allows performance control by means of a simple a priori defined parameter, the upper-bound on the error of the first kind (false alarm probability). The criterion MIC is for example used to estimate the order of Auto-Regressive (AR) processes. The criterion can only be used to test pairs of composite hypotheses; in an A...

متن کامل

Autoregressive Order Estimation Combined with Pruning of the Coefficients

A correctly derived Auto Regressive (AR) model can not always optimize the intended approximation. An optimal model should balance bias, caused by under-fitting, and additional variance, caused by over-fitting. The selection of this optimal AR-model is a combination of AR-order estimation and the reduction of the number of coefficients by pruning. We leave the classical approach of ARorder esti...

متن کامل

Moddemeijer: an Efficient Algorithm for Selecting Optimal Configurations of Ar-coefficients

There exists an essential difference between the correct Auto Regressive (AR) model and the optimal ARmodel. We try to find an optimal model balancing between flexibility, using many AR-parameters, and low variance, using only a few AR-parameters. We select an optimal ARparameter configuration consisting of zero and non-zero parameters given a maximum AR-order. This optimal configuration will b...

متن کامل

Application of information criteria to AR-order estimation

Information criteria, like Akaike’s, can be applied to AR-order estimations. In recent research we have indicated that the search strategy by the application of information criteria to Auto-Regressive (AR) order estimation is essential; there are essentially two different strategies: search the optimal order by the first local minimum of the criterion, or search the order by the global minimum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006